Lesson 10: Near-IR Lens Example

Lesson 8 showed how to design an apochromatic objective for use in the visible spectrum. Now we will design one for the near infrared over the wavelength range from 1.06 to 1.97 um.

The challenge when designing a lens for the infrared is finding optical materials that are useful over the spectral range and whose cost and chemical properties are attractive. The task in this lesson is to redesign an existing lens, replacing some undesirable materials with ordinary optical glass. The reference system is bundled as 1.RLE, with the ID MIT 1 TO 2 UM LENS. You can FETCH that lens and examine its performance. Set the scale of the Fans curves to 0.01 mm.

That lens has three elements of ZNS and one of AS2S3, making four elements in all. Those names refer to zinc sulphide and arsenic trisulphide glass, and we would like to avoid those materials if possible. The first-order properties we need to match are as follows (dimensions are in mm):

- Entering beam radius 17.5
- Chief-ray angle 0.935 degrees
- Back focus distance 16.3
- Cell length 50

The Plan of Action

Rather than try to change the materials in the present lens, all of which have an index greater than 2.0, let us start from scratch. For this we will use the design search program. But first we have to be somewhat choosy: if we just run **DSEARCH** and let it find model glasses, it will not come back with any of the unusual glasses that make a big difference in the NIR. (The model represents an *average* of all glasses.) So we have to steer it. Open the glass table display (MGT), select the Guangming table, and then click the Graph button and select the option shown.

The data are now off the screen, so click in the display and zoom out with the mouse wheel until you see a collection of red dots. Then pan with the right mouse button to center things and zoom in. Click the Full Name button. You should see the display below.

Write down the four glass names circled: D-FK61, G-ZF52, H-ZH88, and H-F51. Those definitely do not behave the same as all the others. We will direct DSEARCH to only use two of them, and later use all four for a comprehensive glass search.

Here is our DSEARCH input:

CORE 16 PROJ DSEARCH 3 QUIET ! the best lens will show up in library location 3 (and also in PAD) ! system requirements follow SYSTEM ID NIR EXAMPLE! lens identificationOBB 0 .935 17.5! specify the object ! lens identification WAVL 1.97 1.53 1.06 ! and the wavelength range UNITS MM END GOALS ! here we set the goals ELEMENTS 5 ! since glass has a lower index, we'll ask for 5. FNUM 1.428 BACK 16 .1 TOTL 50 .1 STOP FIRST ! there seems to be no reason to let the stop position vary STOP FIX ! so we put it in front and keep it there NPASS 100 ANNEAL 200 20 ! a useful starting radius, RSTART 300 TSTART 1 ! and this thickness on each element to start with QUICK 60 90 FOV 0 .5 1 FWT 2 1 1 GLASS POS ! positive elements will use this glass type G D-FK61 GLASS NEG ! and negative this type. G H-ZF88 END ! here we give requirements that are not defaults SPECIAL ACM 3 .1 1 ! auto edge control (AEC) and center thickness control (ACC) are defaults ACA ! but we add to these ACM, so thicknesses do not get too thin, ACA, ASC ! so rays do not approach the critical angle, and ASC so surfaces do not END ! get too close to the hemisphere point. GO ! this starts the process. PROJ

In less than a minute, the process produces a picture of the 10 best configurations it found.

	DESIGN SEARCH RESULTS	
ID NIR EXAMPLE I LENS IDENTIFI SCALE 0.505 X MERIT 0.0002 FILE OSEARCHOLRLE		
ID NIR EXAMPLE I LENS IDENTIFI SCALE 0.001 X MERIT 0.0004 FILE OSEARCHOLPLE		
ID NR EXAMPLE : LENS IDENTIFI SCALE 0.5064 X MERT 0.0005 FILE DSEARCHARLE		
ID NR EXAMPLE I LENS IDENTIFI SCALE 0.5057 X MERIT 0.0005 FILE OSEARCH01RLE		
ID NR EXAMPLE I LENS IDENTIFI SCALE 0.505 X MERT 0.0005 FILE DSEARCHOT.RLE		
ID NIR EXAMPLE I LENS IDENTIFI SCALE D 5000 X MERIT D 0007 FILE DSEARCHOLRLE		
ID NIR EXAMPLE I LENS IDENTIFI SCALE 0.3003 X MERIT 0.0005 FILE DESACHIONE		
ID NIR EXAMPLE I LENS IDENTIFI SCALE 0.5057 X MENT 0.0005		
FILE OSEARCHOR RLE		
ID NR EXAMPLE I LENS IDENTIFI		
MERT COM		
TOTAL CASES RUN: 32 CASES SKIPPED: 0		310-7313 12-MAY-17 14-38-21

We now have a very good 5-element lens, but it has only the two glass types we specified. It's time to do a more comprehensive search.

Look at the MACro DSEARCH_OPT .MAC, which DSEARCH has conveniently constructed for us and should be open in a new editor window.

```
PANT
VLIST RD ALL
VLIST TH ALL
END
AANT P
AEC
ACC
        0.000000 2.000000
0.000000 1.000000
0.000000 1.000000
GSR
                                      4 M
                                                 0.00000
GNR
                                       4 M
                                                 0.500000
                                    4 M
GNR
                                                 1.000000
M 0.160000E+02 0.100000E+00 A BACK
M 0.500000E+02 0.100000E+00 A TOTL
 ACM 3 .1 1 ! AUTO EDGE CONTROL (AEC) AND CENTER THICKNESS CONTROL (ACC) ARE DEFAULTS
               ! BUT WE ADD TO THESE ACM, SO THICKNESSES DO NOT GET TOO THIN, ACA,
 ACA
 ASC
               ! SO RAYS DO NOT APPROACH THE CRITICAL ANGLE, AND ASC SO SURFACES DO NOT
END
SNAP/DAMP 1
SYNOPSYS 100
```

Save this MACro with the name NIR_OPT.MAC. This is the optimization MACro that will be run over and over when we execute **GSEARCH**, which will determine which glass should go on which elements. Now make a new MACro (type **AEE** to open a new editor, and type the data below)

CORE 16 GSEARCH 3 QUIET LOG SURF 1 3 5 7 9 END OFILE 'NIR_OPT.MAC' NAMES G G-ZF52 G D-FK61 G H-ZF88 G H-F51 END USE 2 GO

The lens has improved even more. The performance is now just over 0.2 waves of aberration everywhere.

It looks like we have a solution! There is almost no primary or secondary chromatic aberration. We have succeeded in replacing the undesirable materials with ordinary glass, and the performance became much better than the original at the same time.

Mission accomplished! Here is a SPEC listing of the final lens: synopsys>spe

```
ID NIR EXAMPLE
ID1 DSEARCH CASE WAS 000000000000000010110 22
LENS SPECIFICATIONS:
```

SYSTEM SPECIFICATIONS

OBJECT DISTANCE	(THO)	INFINITE	FOCAL LENGTH	(FOCL)	49.9800
OBJECT HEIGHT	(YPPO)	INFINITE	PARAXIAL FOCAL	POINT	15.9992
MARG RAY HEIGHT	(YMP1)	17.5000	IMAGE DISTANCE	(BACK)	15.9992
MARG RAY ANGLE	(UMP0)	0.0000	CELL LENGTH	(TOTL)	50.0025
CHIEF RAY HEIGHT	(YPP1)	0.0000	F/NUMBER	(FNUM)	1.4280
CHIEF RAY ANGLE	(UPPO)	0.9350	GAUSSIAN IMAGE	HT (GIHT)	0.8157
ENTR PUPIL SEMI-AP	ERTURE	17.5000	EXIT PUPIL SEM	I-APERTURE	24.7688
ENTR PUPIL LOCATIO	N	0.0000	EXIT PUPIL LOC	ATION	-54.7406
WAVL (uM) 1.970000 WEIGHTS 1.000000 COLOR ORDER 2 UNITS APERTURE STOP SURE FOCAL MODE MAGNIFICATION POLARIZATION AND C SURFACE DATA) 1.530000) 1.000000 1 3 TACE (APS) -4.9 COATINGS AR	1.060000 1.000000 MM 1 ON 9800E-11 E IGNORED.	SEMI-APERTURE	17.53054	
SURF RADIU	JS THI	CKNESS MED	IUM	INDEX	V-NUMBER

0	INFINITE	INFINITE	AIR							
1	83.04964	4.55863	D-F	K61	1.48647	78.02	GUANGMIN			
2	-90.13577	1.76097	AIR							
3	-61.20988	2.89016	H-Z	F88	1.87811	26.89	GUANGMIN			
4	-136.80545	1.00000	AIR							
5	26.01458	5.71573	D-F	K61	1.48647	78.02	GUANGMIN			
6	83.59388	25.92496	AIR							
7	24.21580	2.91205	D-F	K61	1.48647	78.02	GUANGMIN			
8	117.43058	2.36412	AIR							
9	-24.23661	2.87587	H-F	51	1.60755	25.46	GUANGMIN			
10	-40.27187S	15.99923S	AIR							
IMG	INFINITE									
KEY	TO SYMBOLS									
A	SURFACE HAS TILTS AN	DECENTERS	в	TAG ON S	SURFACE					
G	SURFACE IS IN GLOBAL	COORDINATES	L	SURFACE	IS IN LOCAL COORD	INATES				
0	SPECIAL SURFACE TYPE		P	ITEM IS	SUBJECT TO PICKUP	i -				
S	ITEM IS SUBJECT TO SO	OLVE	М	SURFACE	HAS MELT INDEX DA	TA				
T	ITEM IS TARGET OF A	PICKUP								
THIS LENS HAS NO SPECIAL SURFACE TYPES										
THIS LENS HAS NO TILTS OR DECENTERS										

SYNOPSYS>

If these lenses are okay mechanically, the problem is solved.

Except ... what is the transmission at 1.97 microns? Type **FIND TRANS IN COLOR 1**. It comes back 98.18%. (Coatings are ignored here because the lens is not in polarization mode.) Very good!

But what if the value had come back too low? Well, then go back to the glass map and display the absorption at 1.97 microns – and select glasses with shorter data bars. Lens design is all about tradeoffs, after all, and with these tools one can get the best one rather easily.