Lesson 15: Real-World Development of a Lens

In Lesson 14 we designed a 7-element lens starting with nothing but plane-parallel surfaces and had the program fit the design to catalog glass types automatically with the ARGLASS feature. But suppose you have a real application and want to develop it further. This lesson covers some additional procedures that would then be appropriate. To make it a real "real world" lesson, we will show how a designer will follow various clues in order to arrive at a solution, and how not all clues lead to success. That is important too: it is instructive to see how sometimes one wanders into blind alleys. As you develop your skills as a lens designer, you will encounter many of them, and should not be discouraged since it happens to us all. With perseverance, a successful design can usually be found.

We will do this lesson in two ways; first with DSEARCH with the help of a number of other tools. Then, in Lesson 17 we show another approach that is actually quicker and easier. You should know about all of the tools used in both approaches.

We will first use DSEARCH to find a good starting point. Here is the input:

CORE 16 DSEARCH 6 QUIET SYSTEM ID DSEARCH SAMPLE OBB 0 20 12.7 WAVL 0.6563 0.5876 0.4861 UNITS MM END GOALS ELEMENTS 7 FNUM 3.575 BACK 50 .01 STOP MIDDLE STOP FREE RT 0.5 FOV 0.0 0.75 1.0 0.0 0.0 FWT 5.0 3.0 3 DELAY 999 RSTART 900 THSTART 7 ASTART 15 NPASS 66 ANNEAL 200 20 Q COLORS 3 SNAPSHOT 10 QUICK 44 66 END SPECIAL PANT END SPECIAL AANT LUL 150 1 1 A TOTL END GO

We run this, and the best lens that is returned is quite good. We optimize and anneal, using the file DSEARCH_OPT, which is in a new editor window.

Suppose we want the lens to work over a range of object distances from one meter to infinity. There are two ways to implement that requirement: with multiconfigurations, which is very flexible but complicated, or by declaring this a zoom lens in which the object distance zooms. The second approach is better here, since it is simpler, does what we want, and we can examine intermediate object distances very easily. We have to set up this lens as a ZFILE zoom lens.

CHG	
APS 3	! declare surface 3 the stop
15 CAO 32	! fix the CAO on the image (so FFIELD works)
FFIELD	! adjust the object height so the image fills the CAO there
14 YMT	! assign a paraxial focus solve to surface 14
ZFILE 1	! start of the ZFILE section
14 14	! there is one zooming group, the last thickness
ZOOM 2	! ZOOM 1 is default; ZOOM 2 gets OBA object on the next line
OBA 1000 -366.554	12.7 ! the object description at this zoom
END	! end of changes

Here we declare surface 3 the stop, so all zooms use the same location, set a hard aperture at the image so the FFIELD directive has a target, put a thickness solve on 14 so all zooms refocus automatically, and declare a single zooming group, surface 14. Then we define the object distance for ZOOM 2 at 1000 mm distance, with a negative YPPO because the value in ZOOM 1 is also negative, and they have to have the same sign.

Run this MACro, and the lens changes to a zoom lens, with only a single airspace zooming in this case. Now you see a new toolbar on the right side of the monitor. What does the image look like in ZOOM 2? If you click on buttons 1 and 2 you see the lens at that zoom setting. Here is zoom 2:

Pretty awful! We have to correct the image at both conjugates. Here is our MACro:

```
AWT: 0.5
PANT
            ! Define variables.
CUL 1.9
            ! Set upper limit of 1.9 on index variables.
FUL 1.9
           ! Don't vary YP1; it is not compatible with the real pupil declaration
VY 1 YP1
                 ! Varies all radii that are not flat.
VLIST RAD ALL
                  ! varies all thicknesses and airspaces except for the
VLIST TH ALL
! back focus, thickness 14, which has a solve in effect
VLIST GLM ALL
END
AANT
                  ! Start of merit function definition.
AEC
                  ! Activate automatic edge-feathering monitor
ACC
                  ! and maximum center thickness monitor.
ADT 6 .1 10
                  ! Keep diameter/thickness ratio 6 or more
!M 33 2 A GIHT
                  ! Comment this out, since the FFIELD will control scale
LUL 150 1 1 A TOTL
M 50 .1 A BACK
                  ! Since the back focus will vary, keep it reasonable
M 90.61 1 A FOCL ! Add this requirement so the focal length doesn't change
GSR AWT 10 5 M 0 ! Note how weights are assigned to the several field points,
! and the symbol AWT controls the aperture weighting.
GNR AWT 5.5 4 M .5
                      ! This creates a ray grid at the ½ field point
                        ! These for the 0.7 field point
GNR AWT 5.5 4 M .7
GNR AWT 3 4 M 1 ! Full field gets the lowest weight.
```

```
ZOOM 2 ! Targets for zoom 2 (with the object at one meter)
GSR AWT 10 5 M 0 ! Note how weights are assigned to field points.
GNR AWT 5.5 4 M .5 ! This creates a ray grid at the ½ field point
GNR AWT 5.5 4 M .7 ! These for the 0.7 field point
GNR AWT 3 4 M 1 ! Full field gets the lowest weight.
END
SNAP
SYNO 50
```

Run this and anneal, and the lens is better but still not very good, with about equal and opposite errors at both ends of the zoom range.

Some subtleties deserve mention: the **GLM ALL** variable will vary all glass models currently in the lens, which means all elements, since DSEARCH uses the glass model unless told otherwise. We have to control the focal length since the object height will be continuously adjusted so the image CAO is filled at full field.

This is better than zoom 2 was before, but there is still a loss of resolution. What to do? We need more variables. What should we add?

A classic tool for cases like this is the STRAIN calculation. The idea is that the surfaces with the largest strain are contributing most of the low-order aberrations, and splitting an element there might relived that strain.

Type **STRAIN P** in the CW.

Indeed, element three has the largest strain. Now we can do one of two things: We can split that element and reoptimize, or we can use a different tool that can figure out the best place to add an element. We will try it both ways. First, let's save this version, so we can go back if things don't work out. Type

STORE 1.

Then go to the WorkSheet (type WS, or click on the button . Then click the button , which lets you split an element by clicking in the PAD display on the axis inside that element. Click between surfaces 5 and 6, splitting the element. Your lens now looks like this:

When the program splits (or adds) an element, it assigns an index pickup, because at that moment it has no other index data. In WS, change the index pickup on surface 7 to a glass model by typing

7 GLM

in the edit pane, and click Update. That changes to a model glass with properties similar to what were there before.

Make a new checkpoint, close WS, run the optimization again, and we see that the lens has improved slightly. The MF is now 2.53. This is the way lens design has long been done, using classic tools, and it was a slow and arduous process. But today we have better tools. Go back to the version before you split the element:

GET 1

and then add a line before the PANT file:

AEI 2 1 14 0 0 0 10 2

This will run the Automatic Element Insertion tool (AEI). Now the program will search for the best place to insert a new element. Run this, and the lens is better. Comment out the AEI line and run your MACro again, then anneal. Here is the result:

RLE									
ID DSEARCH SAMPLE 180									
ID1 I	SEARC	H CASE WAS 00	000000000000000000000000000000000000000	000000	01001111	79			
WAV1	.656	3000 .5876000	.4861000						
APS		5							
FFIE	ELD								
UNI	rs MM								
OBB	0.00	0000 19.4	1264 1	.2.7000	00 -11.00	540	0.00000	0.00000	12.70000
0	AIR								
1	RAD	53.9413943	790523 1	Ч	4.77883929				
1	GLM	1.9000000	0	31	7.62897436				
2	RAD	256.2741391	536815 I	'H	10.43791469	AIR			
3	RAD	-240.8321927	995665 I	'H	2.68192838				
3	GLM	1.5501729	3	45	5.90619514				
4	RAD	33.0833886	630087 I	'H	8.23819322	AIR			
5	RAD	348.1550734	974948 I	'H	24.04523087				
5	GLM	1.9000000	0	31	7.62897436				
6	RAD	-53.2450361	188082 I	Ч	3.59481775	AIR			
7	RAD	-41.0817136	624587 1	Ч	25.48983049				
7	GLM	1.9000000	0	22	2.54554176				
8	RAD	186.3645272	710029 т	Ч	3.44409527	AIR			
9	RAD	-336.9999206	364553 1	Ή	6.07694173				
9	GLM	1.5000000	0	73	3.64948718				
10	RAD	-57.1787045	766177 1	Ή	1.00000000	AIR			
11	RAD	95.1542848	378137 1	Ή	16.98321961				
11	GLM	1.5000000	0	73	3.64948718				
12	RAD	-57.2632094	152352 I	Ή	1.00000000	AIR			
13	RAD	108.6802069	087533 I	н	12.49861869				
13	GLM	1.7710315	3	26	5.03009105				
14	RAD	-94.5597002	836689 I	н	3.05982907	AIR			
15	RAD	-66.0716087	885051 I	Ή	4.69827793				
15	GLM	1.5760325	4	4(0.99972364				
16	RAD	53.28946992	282010 I	н	50.43814444	AIR			
16	CV	0.0187654	3						
16	UMC	-0.1398601	4						
16	тн	50.4381444	4						
16	YMT	0.000000	0						
17	CAO	32.0000000	00.	000000	000 0.0	00000000			
17	CV	0.0000000	00000 тн	I	0.0000000 2	AIR			
ZFII	LE 1								
CAM	RANK	2							

Wow! The program has inserted a new element at surface 3! And the merit function came down from about 2.55 to 1.92. There's a lesson here: The program can figure out how to improve a lens better than you can (unless you are *very* gifted). So it's better to let AEI do it than to try things that seem to make sense. Those things sometimes work, but AEI is better.

Here you see a larger improvement, and the MTF is also better, as you can check yourself. Now we have a lens that is fairly well corrected for both infinity conjugate and at one meter. But what about in-between distances? It would be a rude surprise if we built the lens and found that at an intermediate distance things got really bad. We have to check.

That is one of the reasons we chose to use the ZFILE zoom feature for this job. We can easily scan over the zoom range

and spot any points that perhaps need attention. Click the button at the bottom of the zoom-selection bar: — This opens a zoom slider that is fun to watch.

Zoom Slider	
J	
SCAN	Close
FMS	

Slide the thumb slowly to the right end, watching the PAD display (or click the SCAN button). The image plane slowly moves back, from the infinity focus to the one-meter focus position. The good news is, the image quality shows little change over the entire range, and in fact gets better near the middle. (If it had changed, we could use the CAM command to create an intermediate focus position, making a total of three zooms, and then add some more targets for the ZOOM 3 position in the AANT file.) You can create and target up to 20 zooms, as you will learn if you type HELP CAM to read about that feature.

So we have roughed out a lens that works quite well over the entire focus range. Of course we are not yet done. Now we need to assign real glasses again, and it would be a good idea to increase the thickness of some of the elements, delete those thickness variables, and reoptimze. But ... wait a minute. The fifth element shown in the picture above bothers us. What is it doing? Use the STRAIN command again, and you see that there is very little power or strain on that element. That's a sign that we just might be able to remove it entirely. We have to try! Remove the AEI directive and replace it with

AED 5 QUIET 1 15

And run it again, and – wow! The program says the *ninth* element can be removed! Allow it to do this, then comment out the AED directive and optimize some more. The merit function goes to 2.36 – not quite as good as before, but perhaps good enough. And we have eliminated an element. See how AED can make better decisions than you can?

RLE								
ID DS	SEARCH	SAMPLE		180				
ID1 I	DSEARC	CASE WAS 00000000	000000	00001001111	79			
WAV1	L.656	3000 .5876000 .48610	000					
APS		5						
FFI	ELD							
UNI	rs mm							
OBB	0.00	0000 19.41264	12.	70000 -12.090	57	0.00000	0.00000	12.70000
0	AIR							
1	RAD	62.8507824648534	TH	4.25802685				
1	GLM	1.9000000		37.62897436				
2	RAD	242.2383021934368	TH	17.94509182	AIR			
3	RAD	-155.4943420012135	TH	4.72649410				
3	GLM	1.58912358		39.02768391				
4	RAD	40.3386502191948	TH	1.70305774	AIR			
5	RAD	150.7944944757465	TH	25.55442186				
5	GLM	1.9000000		37.62897436				
6	RAD	-38.9019256687224	TH	1.52918359	AIR			
7	RAD	-31.8151154746487	TH	16.13215543				
7	GLM	1.9000000		22.54554176				
8	RAD	266.4763779948293	TH	4.58032011	AIR			
9	RAD	115.8259371432369	TH	13.04257100				
9	GLM	1.60192516		64.47099564				
10	RAD	-44.3260121545059	TH	1.0000000	AIR			
11	RAD	98.4143150696891	TH	8.84868435				
11	GLM	1.85436291		26.23363793				
12	RAD	-92.1050493948654	TH	3.59579710	AIR			
13	RAD	-56.7923447824885	TH	2.56577649				
13	GLM	1.56906517		42.17387992				
14	RAD	56.3037237015490	TH	50.14291804	AIR			
14	CV	0.01776081						
14	UMC	-0.13986014						
14	тн	50.14291804						
14	YMT	0.0000000						
15	CAO	32.0000000	0.00	0.0 00000	0000000			
15	CV	0.000000000000	тн	0.0000000 A	IR			
ZFILE 1								
CAM	RANK	2						
CAM	EXPON	ENT 1.00000						

So that's how it's done: Figure out what's wrong and use the tools in SYNOPSYS to fix it. Sometimes it's quick and sometimes not. That's what lens design is all about, blind alleys and all.

But that is probably enough for this lesson.

Oh, we almost forgot: Why did we enter the surface number (14) for the zooming group, since the YMT solve will override it anyway? Well, the program requires a group definition, and it won't work otherwise. That's to save you from a serious mistake if you ever leave those data out for a real zoom lens.

We will revisit this problem in Lesson 17 and show how yet other tools can be effectively applied and will save some time.