Lesson 15: Real-World Development of a Lens

In Lesson 14 we designed a 7 -element lens starting with nothing but plane-parallel surfaces and had the program fit the design to catalog glass types automatically with the ARGLASS feature. But suppose you have a real application and want to develop it further. This lesson covers some additional procedures that would then be appropriate. To make it a real "real world" lesson, we will show how a designer will follow various clues in order to arrive at a solution, and how not all clues lead to success. That is important too: it is instructive to see how sometimes one wanders into blind alleys. As you develop your skills as a lens designer, you will encounter many of them, and should not be discouraged since it happens to us all. With perseverance, a successful design can usually be found.

We will do this lesson in two ways; first with DSEARCH with the help of a number of other tools. Then, in Lesson 17 we show another approach that is actually quicker and easier. You should know about all of the tools used in both approaches.

We will first use DSEARCH to find a good starting point. Here is the input:

```
CORE 16
    DSEARCH 6 QUIET
    SYSTEM
    ID DSEARCH SAMPLE
    OBB O 20 12.7
    WAVL 0.6563 0.5876 0.4861
    UNITS MM
    END
    GOALS
    ELEMENTS 7
    FNUM 3.575
    BACK 50 . 01
    STOP MIDDLE
    STOP FREE
    RT 0.5
    FOV 0.0 0.75 1.0 0.0 0.0
    FWT 5.0 3.0 3
    DELAY }99
    RSTART 900
    THSTART }
    ASTART 15
    NPASS 66
    ANNEAL 200 20 Q
    COLORS 3
    SNAPSHOT 10
    QUICK 44 66
    END
    SPECIAL PANT
    END
    SPECIAL AANT
    LUL 150 1 1 A TOTL
    END
    GO
```

We run this, and the best lens that is returned is quite good. We optimize and anneal, using the file DSEARCH_OPT, which is in a new editor window.

Suppose we want the lens to work over a range of object distances from one meter to infinity. There are two ways to implement that requirement: with multiconfigurations, which is very flexible but complicated, or by declaring this a zoom lens in which the object distance zooms. The second approach is better here, since it is simpler, does what we want, and we can examine intermediate object distances very easily. We have to set up this lens as a ZFILE zoom lens.

```
CHG
APS 3 ! declare surface 3 the stop
15 CAO 32 ! fix the CAO on the image (so FFIELD works)
FFIELD ! adjust the object height so the image fills the CAO there
14 YMT ! assign a paraxial focus solve to surface 14
ZFILE 1 ! start of the ZFILE section
14 14 ! there is one zooming group, the last thickness
ZOOM 2 ! ZOOM 1 is default; ZOOM 2 gets OBA object on the next line
OBA 1000 -366.554 12.7 ! the object description at this zoom
END ! end of changes
```

Here we declare surface 3 the stop, so all zooms use the same location, set a hard aperture at the image so the FFIELD directive has a target, put a thickness solve on 14 so all zooms refocus automatically, and declare a single zooming group, surface 14. Then we define the object distance for ZOOM 2 at 1000 mm distance, with a negative YPPO because the value in ZOOM 1 is also negative, and they have to have the same sign.

Run this MACro, and the lens changes to a zoom lens, with only a single airspace zooming in this case. Now you see a new toolbar on the right side of the monitor. What does the image look like in ZOOM 2? If you click on buttons 1 and 2 you see the lens at that zoom setting. Here is zoom 2:

Pretty awful! We have to correct the image at both conjugates. Here is our MACro:
AWT: 0.5
PANT ! Define variables.
PANT ! Define variables.
CUL 1.9 ! Set upper limit of 1.9 on index variables.
CUL 1.9 ! Set upper limit of 1.9 on index variables.
FUL 1.9
FUL 1.9
!VY 1 YP1 ! Don't vary YP1; it is not compatible with the real pupil declaration
!VY 1 YP1 ! Don't vary YP1; it is not compatible with the real pupil declaration
VLIST RAD ALL ! Varies all radii that are not flat.
VLIST RAD ALL ! Varies all radii that are not flat.
VLIST TH ALL ! varies all thicknesses and airspaces except for the
VLIST TH ALL ! varies all thicknesses and airspaces except for the
! back focus, thickness 14, which has a solve in effect
! back focus, thickness 14, which has a solve in effect
VLIST GLM ALL
VLIST GLM ALL
END
END

AANT	! Start of merit function definition.
AEC	! Activate automatic edge-feathering monitor
ACC	! and maximum center thickness monitor.
ADT 6.110	! Keep diameter/thickness ratio 6 or more
!M 332 A GIHT	! Comment this out, since the FFIELD will control scale
LUL 15011 A TOTL	
M 50.1 A BACK	! Since the back focus will vary, keep it reasonable
M 90.61 1 A FOCL	! Add this requirement so the focal length doesn't change
GSR AWT 105 M 0	! Note how weights are assigned to the several field points,
! and the symbol AWT controls the aperture weighting.	
GNR AWT $5.54 \mathrm{M} .5 \quad$! This creates a ray grid at the $1 / 2$ field point	
GNR AWT 5.54 M .7	! These for the 0.7 field point
GNR AWT 34 M	! Full field gets the lowest weight

```
ZOOM 2 ! Targets for zoom 2 (with the object at one meter)
GSR AWT 10 5 M O ! Note how weights are assigned to field points.
GNR AWT 5.5 4 M .5 ! This creates a ray grid at the 1/2 field point
GNR AWT 5.5 4 M .7 ! These for the 0.7 field point
GNR AWT 3 4 M 1 ! Full field gets the lowest weight.
END
SNAP
SYNO 50
```

Run this and anneal, and the lens is better but still not very good, with about equal and opposite errors at both ends of the zoom range.

Some subtleties deserve mention: the GLM ALL variable will vary all glass models currently in the lens, which means all elements, since DSEARCH uses the glass model unless told otherwise. We have to control the focal length since the object height will be continuously adjusted so the image CAO is filled at full field.

This is better than zoom 2 was before, but there is still a loss of resolution. What to do? We need more variables. What should we add?

A classic tool for cases like this is the STRAIN calculation. The idea is that the surfaces with the largest strain are contributing most of the low-order aberrations, and splitting an element there might relived that strain.

Type Strain P in the CW.

Indeed, element three has the largest strain. Now we can do one of two things: We can split that element and reoptimize, or we can use a different tool that can figure out the best place to add an element. We will try it both ways. First, let's save this version, so we can go back if things don't work out. Type

STORE 1.

Then go to the WorkSheet (type WS, or click on the button \mp. Then click the button $\mid \mathbb{D}$, which lets you split an element by clicking in the PAD display on the axis inside that element. Click between surfaces 5 and 6 , splitting the element. Your lens now looks like this:

When the program splits (or adds) an element, it assigns an index pickup, because at that moment it has no other index data. In WS, change the index pickup on surface 7 to a glass model by typing

7 GLM
in the edit pane, and click Update. That changes to a model glass with properties similar to what were there before.

Make a new checkpoint, close WS, run the optimization again, and we see that the lens has improved slightly. The MF is now 2.53. This is the way lens design has long been done, using classic tools, and it was a slow and arduous process. But today we have better tools. Go back to the version before you split the element:

```
GET 1
```

and then add a line before the PANT file:

AEI 2114000102

This will run the Automatic Element Insertion tool (AEI). Now the program will search for the best place to insert a new element. Run this, and the lens is better. Comment out the AEI line and run your MACro again, then anneal. Here is the result:

```
RLE
ID DSEARCH SAMPLE }18
ID1 DSEARCH CASE WAS 0000000000000000001001111 }7
    WAVL . 6563000 .5876000 .4861000
    APS 5
    FFIELD
```



```
        O AIR
        1 RAD
        1 GLM
        2 RAD
        3 RAD -240.8321927995665
        3 GLM 1.55017293
            33.0833886630087 TH 8.23819322 AIR
        348.1550734974948 TH 24.04523087
            1.90000000
        -53.2450361188082 TH 3.59481775 AIR
        -41.0817136624587 TH 25.48983049
        22.54554176
            186.3645272710029 TH 3.44409527 AIR
        -336.9999206364553 TH 6.07694173
        73.64948718
            1.00000000 AIR
            16.98321961
        73.64948718
            1.00000000 AIR
            12.49861869
        26.03009105
            3.05982907 AIR
        -66.0716087885051 TH 4.69827793
            1.57603254 40.99972364
            53.2894699282010 TH 50.43814444 AIR
                0.01876543
                -0.13986014
                50.43814444
                    0.00000000
                32.00000000 0.00000000 0.00000000
                0.0000000000000 TH 0.00000000 AIR
ZFILE 1
CAM RANK 2
```

| OBA 1000.00000 | -366.554000 | 12.7000 | 0.0000 | 0.00000000 | 0.0000 | 12.7000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ZDATA $0.0000000 \mathrm{E}+00$

END

Tan.

TRANSVERSE ABER.
Merit $=\mathbf{1 . 9 1 7 1 6}$

0.75000

1.00000

Wow! The program has inserted a new element at surface 3! And the merit function came down from about 2.55 to 1.92. There's a lesson here: The program can figure out how to improve a lens better than you can (unless you are very gifted). So it's better to let AEI do it than to try things that seem to make sense. Those things sometimes work, but AEI is better.

Here you see a larger improvement, and the MTF is also better, as you can check yourself. Now we have a lens that is fairly well corrected for both infinity conjugate and at one meter. But what about in-between distances? It would be a rude surprise if we built the lens and found that at an intermediate distance things got really bad. We have to check.

That is one of the reasons we chose to use the ZFILE zoom feature for this job. We can easily scan over the zoom range and spot any points that perhaps need attention. Click the button at the bottom of the zoom-selection bar: $\#$ This opens a zoom slider that is fun to watch.

Slide the thumb slowly to the right end, watching the PAD display (or click the SCAN button). The image plane slowly moves back, from the infinity focus to the one-meter focus position. The good news is, the image quality shows little change over the entire range, and in fact gets better near the middle. (If it had changed, we could use the CAM command to create an intermediate focus position, making a total of three zooms, and then add some more targets for the ZOOM 3 position in the AANT file.) You can create and target up to 20 zooms, as you will learn if you type HELP CAM to read about that feature.

So we have roughed out a lens that works quite well over the entire focus range. Of course we are not yet done. Now we need to assign real glasses again, and it would be a good idea to increase the thickness of some of the elements, delete those thickness variables, and reoptimze. But ... wait a minute. The fifth element shown in the picture above bothers us. What is it doing? Use the STRAIN command again, and you see that there is very little power or strain on that element. That's a sign that we just might be able to remove it entirely. We have to try! Remove the AEI directive and replace it with

AED 5 QUIET 115

And run it again, and - wow! The program says the ninth element can be removed! Allow it to do this, then comment out the AED directive and optimize some more. The merit function goes to 2.36 - not quite as good as before, but perhaps good enough. And we have eliminated an element. See how AED can make better decisions than you can?

```
RLE
ID DSEARCH SAMPLE 180
ID1 DSEARCH CASE WAS 0000000000000000001001111 }7
    WAVL . 6563000 .5876000 . 4861000
    APS 5
    FFIELD
    UNITS MM
    OBB 0.000000 19.41264 1. 12.70000 
        O AIR
        1 RAD 62.8507824648534 TH 4.25802685
        1 GLM 1.90000000
        2 RAD 242.2383021934368
        3 RAD -155.4943420012135
        3 GLM 1.58912358
            40.3386502191948 TH 1.70305774 AIR
        150.7944944757465 TH 25.55442186
            1.90000000
        -38.9019256687224 TH 1.52918359 AIR
        -31.8151154746487 TH 16.13215543
        22.54554176
            4.58032011 AIR
            13.04257100
        64.47099564
            1.00000000 AIR
            8.84868435
        26.23363793
            3.59579710 AIR
            2.56577649
        42.17387992
            56.3037237015490 TH 50.14291804 AIR
                0.01776081
                -0.13986014
                50.14291804
                    0.00000000
                                32.00000000 0.00000000 0.00000000
                                0.0000000000000 TH 0.00000000 AIR
```



```
        1
    CAM RANK 2
    CAM EXPONENT 1.00000
```

OBA	1000.00000	-366.554000	12.7000	0.0000	0.00000000	0.0000	12.7000

Tan.

TRANSVERSE ABER.
TRANSVERSE ABER. 1.00E-06 REL. FIELD
Merit $=2.35967$

0.75000

1.00000

So that's how it's done: Figure out what's wrong and use the tools in SYNOPSYS to fix it. Sometimes it's quick and sometimes not. That's what lens design is all about, blind alleys and all.

But that is probably enough for this lesson.
Oh, we almost forgot: Why did we enter the surface number (14) for the zooming group, since the YMT solve will override it anyway? Well, the program requires a group definition, and it won't work otherwise. That's to save you from a serious mistake if you ever leave those data out for a real zoom lens.

We will revisit this problem in Lesson 17 and show how yet other tools can be effectively applied and will save some time.

