Lesson 5: Improving a lens designed on another program

In this lesson we start with a lens designed on a different program and apply some of the newest tools to see if we can improve its performance.

Here is the starting lens, along with MTF curves at three field points. (Type MMF, select the Multicolor option, then click Execute.) (The picture below has switch 85 turned on, showing IR wavelengths in red.)

RLE
ID EXAMPLE LENS
53
WAVL . 7150000 . 7100000 . 7050000
CORDER 132
APS -11
TEMPERATURE 30.00000
WAP 3
GTZ
UNITS MM
$\begin{array}{lllllll}\text { OBB } & 0.000000 & 15.20000 & 6.24500 & -13.54114 & 0.00000 & 0.00000\end{array}$
6.24500

0 AIR
$1 \mathrm{CV} \quad 0.0000000000000 \mathrm{TH} \quad 4.50000000$
1 N 11.45505601 N 21.45516542 N 31.45527657
1 DNDT 1.090E-05 9.960E-06 9.700E-06 3.65000E-01 5.46000E-01 6.44000E-01
1 CTE 0.500000E-06
1 GTB U 'FUSILICA
$2 \mathrm{CV} \quad 0.0000000000000$ TH 1.00000000 AIR
3 RAD 31.3000000000000 TH 9.80000000
3 N1 1.73585988 N2 1.73610163 N3 1.73634814
3 CTE $0.806000 \mathrm{E}-05$
3 GTB S 'N-LAF2 '
4 RAD 111.9000000000000 TH 1.50000000 AIR
5 RAD 28.2100000000000 TH 4.00000000
5 N1 1.51269554 N2 1.51282313 N3 1.51295285

This lens operates in the near IR at a speed of F/3.5, and must be telecentric, have low distortion, and be diffraction limited. At first look, this design is not bad, with less than $1 / 4$ wave of aberration.

Maximum distortion over the field is just over $1 / 2$ micron, and the maximum departure from telecentricity is about 0.01 radians. Not bad at all - but if we can improve the baseline performance, that will give us more leeway for tolerances, so it's worth a try.

The lens at the moment uses the WAP 3 pupil, so we first make some system changes. Then we optimize. Here is our MACro:

```
CHG
WAP 1 ! keep entering beam diameter constant over field
19 UMC -0.14286 ! maintain F/number
CFREE ! remove the clear aperture at the stop
END
PANT
VY O YP1 ! let the program find the best stop location
VLIST RAD ALL ! all radii will change except }19\mathrm{ and the flat windows
VLIST TH ALL EXCEPT 1 LB2 ! and all thicknesses except 1 and 20
END
AANT
AEC ! monitor feathered edges
ACC ! and keep thicknesses less than 25.4 mm
M 89.6 1 A TOTL ! keep total lens length constant
M O 50 A GIHT ! control distortion at full field
S P YA 1
M O 50 A GIHT ! and at half field
DIV CONST 2
```

```
S P YA . }
M O 20 A P HH . 7 ! control telecentricity at 0.7 field
GSO 0 0.1 5 M 0 ! correct OPDs of ray grids at three fields
GNO 0 0.05 4 M .7
GNO 0 0.05 4 M 1
END
SNAP ! get snapshot every iteration
SYNO 30 ! optimize for 30 cycles.
```

(The simplest way to create this set of ray-grid aberrations is with the Ready Made Raysets button in the MACro editor. In this case we selected set number 8, which creates both transverse and OPD targets, and then elected to delete the transverse targets and increase the weighting of the OPD targets at full field. The Bare-bones Rayset dialog can also do it, with more options then available.)

We optimize with this file and then anneal for a few cycles. The lens is improved somewhat.

The lens is not quite as good as before, as expected, but still not bad. Now we will use the Automatic Element Insertion feature to see if going back to the previous number of elements gives us results better than the original lens.

To do this, we change the AED line to
AEI 3 3 $\mathbf{1 7} 0$! insert one element between surfaces 3 and 17 .
and run the MACro once more. (If you have a multicore PC, you should also add the line
CORE nb
at the top of your MACro, where $\underline{\mathrm{nb}}$ is the number of cores. This will run AEI $\underline{\mathrm{nb}}$ times faster.)
The program has inserted an element before surface 12. We add a new variable
VY 12 GLM
to the PANT file, so the glass model on the new element can vary, comment out the AEI line, reoptimize and anneal this version.

Very interesting! The program has moved the stop location inside the lens at 9. We could cut a groove in that element, if the lens has a fixed aperture, and get superb performance - but if not, we assign a real stop to surface 11, remove the variable for YP1, and reoptimize once again. This works almost as well, giving us this lens:

RLE
ID EXAMPLE LENS 141
WAVL . 7150000.7100000 .7050000
CORDER 132
APS -11
TEMPERATURE 30.00000
WAP 1
GTZ
UNITS MM
$\begin{array}{lllllll}\text { OBB } & 0.000000 & 15.20000 & 6.24500 & -11.63722 & 0.00000 & 0.00000\end{array}$
6.24500

0 AIR
$1 \mathrm{CV} \quad 0.0000000000000$ TH 4.50000000
1 N 11.45505601 N 21.45516542 N 31.45527657
1 DNDT $1.090 \mathrm{E}-05 \quad 9.960 \mathrm{E}-06 \quad 9.700 \mathrm{E}-063.65000 \mathrm{E}-01 \quad 5.46000 \mathrm{E}-01 \quad 6.44000 \mathrm{E}-01$
1 CTE 0.500000E-06
1 GTB U 'FUSILICA
$2 \mathrm{CV} \quad 0.0000000000000$ TH 1.00000000 AIR
3 RAD 31.7420365099046 TH 4.89311077
3 N 11.73585988 N 21.73610163 N 31.73634814
3 CTE 0.806000E-05
3 GTB S 'N-LAF2
4 RAD $205.8474850968830 \quad$ TH 6.35592001 AIR
5 RAD 31.8551157618315 TH 1.39568729
5 N 11.51269554 N 21.51282313 N 31.51295285
5 CTE $0.710000 \mathrm{E}-05$
5 GTB S 'N-BK7 '
6 RAD 12.9057883346246 TH 7.19477052 AIR
7 RAD -23.8475364230033 TH 1.00000000
7 N1 1.51269554 N2 1.51282313 N3 1.51295285
7 CTE $0.710000 \mathrm{E}-05$
7 GTB S 'N-BK7

Yes, this exercise was definitely worth doing! The program has removed the original lens element at 14 and replaced it with a new lens at 12. Maximum distortion is now about $1 / 4$ micron (half of the original), and departure from telecentricity is now less than 0.0048 . We then replaced the model glass at 12 with the glass used on surface 3 and reoptimized with little loss of quality. (When you do these lessons yourself, you may get slightly different results, due to the randomness of the annealing stage.)

