Lesson 8: The Apochromat

This lesson shows how to design a lens with better color correction than one can get with a simple doublet. A concise description of how one can proceed is given in Rutten \& van Venrooij's book Telescope Optics. The gist of it is, one must use three different kinds of glass that satisfy certain properties. They may easily be selected by inspecting the glass-table display. To illustrate, we will start with a design using glass types N-SK4, N-KZFS4, and N-BALF10 from the Schott catalog. (These glasses are sometimes recommended for the purpose.) Here is the starting lens file:

Tan.

OPTICAL PATH DIFF. $\quad 1.00 \mathrm{E}-06$ REL. FIELD
0.75000

RLE
RLE
ID F10 APO
ID F10 APO
WAVL . 6500000 .5500000 . 4500000
WAVL . 6500000 .5500000 . 4500000
APS 3
APS 3
llllllll
llllllll
O AIR
O AIR
RAD -300.4494760791975 TH 0.58187611
RAD -300.4494760791975 TH 0.58187611
N1 1.60978880 N2 1.61494395 N3 1.62386887
N1 1.60978880 N2 1.61494395 N3 1.62386887
GTB S 'N-SK4 '
GTB S 'N-SK4 '
RAD -7.4819193194388 TH 0.31629961 AIR
RAD -7.4819193194388 TH 0.31629961 AIR
AIR
AIR
-6.8555018049530 TH 0.26355283
-6.8555018049530 TH 0.26355283
N1 1.60953772 N2 1.61628830 N3 1.62823445
N1 1.60953772 N2 1.61628830 N3 1.62823445
GTB S 'N-KZFS4
GTB S 'N-KZFS4
RAD 5.5272935517214 TH 0.04305983 AIR
RAD 5.5272935517214 TH 0.04305983 AIR
AIR
AIR
RAD 5.6098999521052 TH 0.53300999
RAD 5.6098999521052 TH 0.53300999
N1 1.66610392 N2 1.67304720 N3 1.68543133
N1 1.66610392 N2 1.67304720 N3 1.68543133
GTB S 'N-BAF10
GTB S 'N-BAF10
RAD -27.9819596092866 TH 39.24611007 AIR
RAD -27.9819596092866 TH 39.24611007 AIR
AIR
AIR
CV -0.03573731
CV -0.03573731
UMC -0.05000000
UMC -0.05000000
TH 39.24611007
TH 39.24611007
YMT 0.00000000
YMT 0.00000000
-11.2104527948015 TH 0.00000000 AIR
-11.2104527948015 TH 0.00000000 AIR

Open this file, open the SketchPAD (PAD) and then click the GlassTable button Ek? . Select the Schott table from the box that opens. Here is the display:

This shows the Schott glass map, but it is not what we want for this exercise. Click the Graph button ...

... and then select Plot $\mathrm{P}(\mathrm{F}, \mathrm{e})$ vs. Ve

The display changes, and now the abscissa is the V-number at the e line (0.54607 um) and the ordinate is the quantity $\left(\mathrm{N}_{\mathrm{F}}-\mathrm{N}_{\mathrm{e}}\right) /\left(\mathrm{N}_{\mathrm{F}}-\mathrm{N}_{\mathrm{C}}\right)$.
The theory of the apochromat says that you must select three glasses that do not lie on a straight line. They must form a triangle, and the larger the area the better. The green circles show the present glasses in the triplet. They work very well - but we can do somewhat better.
Click on the green circle with the number " 1 " beside it. That is the glass currently on surface $1, \mathrm{~N}-\mathrm{SK} 4$. Now click the Properties button, to see the properties of this glass, shown below.

Hmmm ... this glass is not all that stable: humidity rating of 3 and acid sensitivity of 5. Let's see if we can find a better glass for the first element. (This is exposed to the environment, so it's important.) Click the Graph button again, and then click the radio button for Acid Sensitivity and then OK. Zoom in with the mouse wheel as needed near the green circle so things get much bigger, and then click the Full Name button.

Now you see a red vertical line through the glass locations, showing the acid sensitivity. The line for glass N SK4 is rather long, since that glass is not very resistant. To the left you see N-BAK2, with no line at all (it's in the best category). Click that spot, and when the glass name appears in the window on the right ...

... click the Properties button again. Aha! This glass has an acid rating of 1 , better humidity tolerance, and a lower price as well. There's no reason we can't use it instead of the previous N-SK4, since it makes just as good a triangle with the other glasses. Type the surface number (1) into the Surface box and click \Apply/. Glass N-BAK2 is now assigned to surface 1.

Now clean up the display by deleting the names (click Spots Only), and then Graph, and select No Graph and OK. Our triangle is just as nice as before.

Of course the lens is not optimized for this glass, so we have to run the optimization program. Here is a MACro that will do the job.

```
PANT
VLIST RAD 1 2 3 4 5 7
VLIST TH 2 4
END
AANT
AEC
ACC
GSO O 1 4 M M O O
GNO 0 . 2 3 M . 75 0
GNO 0 . 1 3 M 1.0 0
END
SNAP
SYNO 30
```

Run this MACro, and now the correction is better than $1 / 10$ wave on axis. We have a better design that is cheaper to make, more resistant to the elements, and corrected over the range 0.45 to 0.65 um . Here is the RLE file for that design:

```
RLE
ID F10 APO
    WAVL . 6500000 . 5500000 . 4500000
    APS 3
    lllllll}\begin{array}{lllll}{\mathrm{ UNITS INCH }}\\{\mathrm{ OBB 0.000000 0.50000 0.00000 0.00000 2.00000}}
    OBB 0.000000 0.50000 0.0.00000 2.0.0.00652 0.00000 0.0000000
        O AIR
        RAD -167.6807592628928 TH 0.58187611
        N1 1.53742490 N2 1.54188880 N3 1.54960358
        CTE 0.800000E-05
        GTB S 'N-BAK2 '
        RAD -7.0647888938302 TH 0.36076391 AIR
        RAD -6.5538674975636 TH 0.26355283
        N1 1.60953772 N2 1.61628830 N3 1.62823445
        CTE 0.730000E-05
        GTB S 'N-KZFS4
        RAD 5.3138288434095 TH 0.03937000 AIR
        RAD 5.4083667709938 TH 0.53300999
        N1 1.66610392 N2 1.67304720 N3 1.68543133
        CTE 0.618000E-05
        GTB S 'N-BAF10
        6 RAD -19.4177738787113 TH 39.42904372 AIR
        6 CV -0.05149921
        6 \text { UMC -0.05000000}
        TH 39.42904372
        YMT 0.00000000
        RAD -11.1931120564708 TH 0.00000000 AIR
    END
```

Let's see how the defocus varies with color in the new design.
CHG
NOP
END
PLOT DELF FOR WAVL $=.45 \mathrm{TO} .65$

This analysis shows a defocus of about 0.0026 inches over the design range, and a perfect Airy disk. (The latter was calculated by Image Tools (мIт) with 10 wavelengths assigned to the lens to make a good white in the center, with the coherent effect.) The defocus is not zero because the program has balanced a small shift against the change of spherical aberration with wavelength. Both are small. (This version is in L8L3.RLE.) How did we assign 10 wavelengths? With the Spectrum Wizard (MSW).

Note how we plotted DELF in this case instead of BACK, as we did previously. Why? Well, we eliminated all solves with the NOP directive, so the back focus is now fixed. But the paraxial defocus, DELF, now changes with wavelength.

TRANSVERSE ABER.
Merit $=0.00637635$

0.75000

1.00000

