Virtual Image Plane Analysis

Step 1: Launch the system

Launch the lens system (see Appendix B for lens data file):
HUD_TEST.RLE
We want to find out the virtual image plane after surface 2 (ie, looking into surface 2 from the direction of surface 3 along the blue bold arrow).

Step 2: Push the system to Config 2 for virtual image analysis

Then you will notice that the 'ACON 2' button is pressed down, signaling
 that you are working with the $2^{\text {nd }}$ configuration. You can go back to the Config 1 by simply clicking at the 'ACON 1' button to the left.

Note: This step is optional. You can do everything in Config 1. However, using Config 2 will allow you to work on two systems at the same time. For example, you can keep designing your reflector system in Config 1 , and only push it to Config 2 when you want to do the image plane analysis

Step 3: change the system in config 2 in the SpreadSheet

First, click the SpreadSheet button at the PAD Window toolbar to launch it:

Step 3: change the system in config 2 in the SpreadSheet

Click at row 3 to highlight surface 3 . Then click the delete surface button to remove it.

	Surface Type	Surface ID	Radius	Thickness	Material	Index	Coating	Aperture Type (Outer/Inner)	Y Semi-Width (Outer/Inner)	X Semi-Width (Outer/Inner)	Conic	Tilt/Decenter
0	Finite Object (angular)		infinite	250	Air	1		Def (Circ)/none	0/0	0/0		
1	Flat		infinite	184.005889	Air	1	None	Def (Circ)/none	5/0	5/0		
2	USS Type 2		infinite	44.5620512	Air	1	None	Def (Circ)/none	52.4487/0	52.4487/0		Global
3	Flat		infinite	0	Air	1	None	Def (Circ)/none	995.095/0	995.095/0		Global

Note 1: For more details on how to use the Tilt and Decenter Editor in the SYNOPSYSTM Spreadsheet, see the section 'Tilt/Decenter Editor' in the 'Manual for User Interface Plus'. (Manual for User Interface Plus > Surface Data Editors > Tilt/Decenter Editor)

[^0]

Step 4: put surface 3 at the virtual image plane by doing optimization

We will let SYNOPSYS find the virtual image plane for us by running the following optimization macro (you can copy and paste the following script into the Macro editor and run it):

```
PANT
VY 3 YG !make surface 3 global Y coordinate a variable
VY 3 ZG !make surface 3 global Z coordinate a variable
VY 3 AG !make surface 3 global Alpha tilt angle a variable
END
AANT
M O 1 A P YA O O O O lcontrol real height of axis ray to zero at surface 3
M O 1 A P HH O O O O lcontrol axis ray hit surface 3 with HH = 0
M O 1 A P YC 0 0.1 0 !put surface 3 at the paraxial focus
END
SYNO 20
```

After running the optimization, the system in Config 2 is updated as shown here.

Note: for the $3^{\text {rd }}$ control M 01 A P YC 00.10 , we use YEN = 0.1 to locate the paraxial focus. You can also use YEN $=1$ to put image plane at the real marginal ray focus.
For more information of the YA, HH, YC control, please see the Appendix and refer to the User Manual: 10.3.1.2 User-specified ray aberrations

Step 4: put surface 3 at the virtual image plane by doing optimization

You can click the Lens Edit button at the SketchPad window to view the lens data of surface 3

APPENDIX

Appendix A: AANT syntax

```
AANT
M O 1 A P YA O O O O lcontrol real height of axis ray to zero at surface 3
M O 1 A P HH O O O O l control axis ray hit surface 3 with HH = 0
M O 1 A P YC 0 0.1 0 !put surface 3 at the paraxial focus
END
```

Each aberration control can be broken down into 2 parts: Goal and Details

The $1^{\text {st }}$ numeric parameter in the GOAL section is the TARGET, and the $2^{\text {nd }}$ is the WEIGHT.
The $1^{\text {st }}$ alphabet M means to Minimize the control item described in the DETAILS section to 0 .
For more details, see User Manual 10.3 Aberration Input (AANT)

To understand the DETAILS section, we refer to User Manual: 10.3.1.2 User-specified ray aberrations. The syntax for the user-specified ray aberration DETAILS is:

\{ A / S / MUL / DIV \} \{ ICOL / P \} name HBAR XEN YEN GBAR [SN]

In our example, we have:

$$
\begin{array}{llllllllll}
\text { M } & 0 & 1 & \text { A P YA } & 0 & 0 & 0 & 0
\end{array}
$$

It means that you want to control the real ray height (YA) of the ray, for the primary color (P), with $\mathrm{HBAR}=0, \mathrm{XEN}=0, \mathrm{YEN}=0$, and $G B A R=0$, to be zero (TARGET) at the last surface (ie, surface 3 [SN]). When the SN parameter is not specified, it is default to the last surface. The control M 01 A P YA 00003 is the same as the previous one.

Appendix B: HUD_TEST.rle

Continue in next slide

Appendix B: HUD_TEST.rle, Continued

3	ZERNIKE	5.00000000	0.00000000	0.00000000	1.00000000
	ZERNIKE	30.118959985	274E-01		
	ZERNIKE	40.3905510459	015E-01		
	ZERNIKE	70.1074981909	818E-02		
	ZERNIKE	80.214110682	902E-04		
	ZERNIKE	100.7055761441	260E-03		
	ZERNIKE	110.5952412002	872E-06		
	ZERNIKE	140.8666587102	194E-06		
	ZERNIKE	150.185822893	175E-07		
	ZERNIKE	$16-.666419600$	047E-05		
	ZERNIKE	190.1845200309	441E-06		
	ZERNIKE	200.5297616008	216E-08		
	ZERNIKE	370.1187460608	313E-01		
3	3 GLO POS	0.00000000	-100.00000000	400.00000000	
3	3 GLO ANG	159.18323033	0.00000000	0.00000000	
3	3 REFLECT				
3	3 DCCR				
	ZVZ				
4	CV	0.0000000000000	TH 0.000	0 AIR	
4	4 GLO POS	0.00000000	-120.00000000	350.00000000	
4	GLO ANG	-158.20107429	0.00000000	0.00000000	
END					

Appendix C: change the system in config 2 with script

In this example, we want to find out the virtual image plane after surface 2 . We will first remove surface 3 and 4 in the existing system. Then run the following scripts to change the system:

```
!The following block between CHG...END is the SYNOPSYS
!change file that specifies the changes to be made to the
!original system
CHG
3 SIN !insert surface 3 (see User Manual 3.6.1.1)
3 GLOB !specify that surface 3 is a GLOBAL surface (see User Manual 3.8.2)
3 MXSF !make surface 3 the last surface (ie, only keeps
    !surface 1 and 2 in the original system)(see User Manual 3.6.1.2)
END
```

Now the system in Config 2 is updated as shown here:

[^0]: Note 2: See Appendix C on how to do this using script.

